Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 23, 2026
- 
            Background: The burden of diarrheal diseases remains high among children in low-income countries. Enteropathogens are challenging to control because they are transmitted via multiple pathways. Chickens are an important animal protein source, but live chickens and their products are often highly contaminated with enteropathogens. Objectives: We conducted this study to a) understand the contribution of multiple transmission pathways to the force of infection of Campylobacter spp. and nontyphoidal Salmonella spp., b) quantify the potential impact of reducing each pathway on human infection, and c) quantify hypothesized pathway reduction from the context of Maputo, Mozambique. Methods: We developed transmission models for Campylobacter and Salmonella that captured person-to-person, water-to-person, food-to-person, soil-to-person, animal-to-person, and all-other-sources-to-person in an urban, low-income setting in Mozambique. We calibrated these models using prevalence data from Maputo, Mozambique and estimates of attributable fraction of transmission pathways for the region. We simulated the prevalence of human infection after reducing transmission through each pathway. Results: Simulation results indicated that if foodborne transmission were reduced by 90%, the prevalence of Campylobacter and Salmonella infection would decline by [52.2%; 95% credible interval (CrI): 39.7, 63.8] and (46.9%; 95% CrI: 39, 55.4), respectively. Interruption of any other pathway did not have a substantial impact. Combined with survey and microbiology data, if contamination of broiler chicken meat at informal markets in Maputo could be reduced by 90%, the total infection of Campylobacter and Salmonella could be reduced by 21% (16-26%) and 12% (10-13%), respectively. Discussion: Our transmission models showed that the foodborne transmission has to be reduced to control enteropathogen infections in our study site, and likely in other similar contexts, but mitigation of this transmission pathway has not received sufficient attention. Our model can serve as a tool to identify effective mitigation opportunities to control zoonotic enteropathogens.more » « less
- 
            Abstract Artificial intelligence (AI) is already widely used in daily communication, but despite concerns about AI’s negative effects on society the social consequences of using it to communicate remain largely unexplored. We investigate the social consequences of one of the most pervasive AI applications, algorithmic response suggestions (“smart replies”), which are used to send billions of messages each day. Two randomized experiments provide evidence that these types of algorithmic recommender systems change how people interact with and perceive one another in both pro-social and anti-social ways. We find that using algorithmic responses changes language and social relationships. More specifically, it increases communication speed, use of positive emotional language, and conversation partners evaluate each other as closer and more cooperative. However, consistent with common assumptions about the adverse effects of AI, people are evaluated more negatively if they are suspected to be using algorithmic responses. Thus, even though AI can increase the speed of communication and improve interpersonal perceptions, the prevailing anti-social connotations of AI undermine these potential benefits if used overtly.more » « less
- 
            To address the widespread problem of uncivil behavior, many online discussion platforms employ human moderators to take action against objectionable content, such as removing it or placing sanctions on its authors. Thisreactive paradigm of taking action against already-posted antisocial content is currently the most common form of moderation, and has accordingly underpinned many recent efforts at introducing automation into the moderation process. Comparatively less work has been done to understand other moderation paradigms---such as proactively discouraging the emergence of antisocial behavior rather than reacting to it---and the role algorithmic support can play in these paradigms. In this work, we investigate such a proactive framework for moderation in a case study of a collaborative setting: Wikipedia Talk Pages. We employ a mixed methods approach, combining qualitative and design components for a holistic analysis. Through interviews with moderators, we find that despite a lack of technical and social support, moderators already engage in a number of proactive moderation behaviors, such as preemptively intervening in conversations to keep them on track. Further, we explore how automation could assist with this existing proactive moderation workflow by building a prototype tool, presenting it to moderators, and examining how the assistance it provides might fit into their workflow. The resulting feedback uncovers both strengths and drawbacks of the prototype tool and suggests concrete steps towards further developing such assisting technology so it can most effectively support moderators in their existing proactive moderation workflow.more » « less
- 
            COVID-19 has been a sustained and global crisis with a strong continual impact on daily life. Staying accurately informed about COVID-19 has been key to personal and communal safety, especially for essential workers— individuals whose jobs have required them to go into work throughout the pandemic—as their employment has exposed them to higher risks of contracting the virus. Through 14 semi-structured interviews, we explore how essential workers across industries navigated the COVID-19 information landscape to get up-to-date information in the early months of the pandemic. We find that essential workers living through a sustained crisis have a broad set of information needs. We summarize these needs in a framework that centers 1) fulfilling job requirements, 2) assessing personal risk, and 3) keeping up with crisis news coverage. Our findings also show that the sustained nature of COVID-19 crisis coverage led essential workers to experience breaking points and develop coping strategies. Additionally, we show how workplace communications may act as a mediating force in this process: lack of adequate information in the workplace caused workers to struggle with navigating a contested information landscape, while consistent updates and information exchanges at work could ease the stress of information overload. Our findings extend the crisis informatics field by providing contextual knowledge about the information needs of essential workers during a sustained crisis.more » « less
- 
            McBain, Andrew J. (Ed.)ABSTRACT The recovery of metagenome-assembled genomes (MAGs) from metagenomic data has recently become a common task for microbial studies. The strengths and limitations of the underlying bioinformatics algorithms are well appreciated by now based on performance tests with mock data sets of known composition. However, these mock data sets do not capture the complexity and diversity often observed within natural populations, since their construction typically relies on only a single genome of a given organism. Further, it remains unclear if MAGs can recover population-variable genes (those shared by >10% but <90% of the members of the population) as efficiently as core genes (those shared by >90% of the members). To address these issues, we compared the gene variabilities of pathogenic Escherichia coli isolates from eight diarrheal samples, for which the isolate was the causative agent, against their corresponding MAGs recovered from the companion metagenomic data set. Our analysis revealed that MAGs with completeness estimates near 95% captured only 77% of the population core genes and 50% of the variable genes, on average. Further, about 5% of the genes of these MAGs were conservatively identified as missing in the isolate and were of different (non- Enterobacteriaceae ) taxonomic origin, suggesting errors at the genome-binning step, even though contamination estimates based on commonly used pipelines were only 1.5%. Therefore, the quality of MAGs may often be worse than estimated, and we offer examples of how to recognize and improve such MAGs to sufficient quality by (for instance) employing only contigs longer than 1,000 bp for binning. IMPORTANCE Metagenome assembly and the recovery of metagenome-assembled genomes (MAGs) have recently become common tasks for microbiome studies across environmental and clinical settings. However, the extent to which MAGs can capture the genes of the population they represent remains speculative. Current approaches to evaluating MAG quality are limited to the recovery and copy number of universal housekeeping genes, which represent a small fraction of the total genome, leaving the majority of the genome essentially inaccessible. If MAG quality in reality is lower than these approaches would estimate, this could have dramatic consequences for all downstream analyses and interpretations. In this study, we evaluated this issue using an approach that employed comparisons of the gene contents of MAGs to the gene contents of isolate genomes derived from the same sample. Further, our samples originated from a diarrhea case-control study, and thus, our results are relevant for recovering the virulence factors of pathogens from metagenomic data sets.more » « less
- 
            Abstract This article provides an overview of intimate threats: a class of privacy threats that can arise within our families, romantic partnerships, close friendships, and caregiving relationships. Many common assumptions about privacy are upended in the context of these relationships, and many otherwise effective protective measures fail when applied to intimate threats. Those closest to us know the answers to our secret questions, have access to our devices, and can exercise coercive power over us. We survey a range of intimate relationships and describe their common features. Based on these features, we explore implications for both technical privacy design and policy, and offer design recommendations for ameliorating intimate privacy risks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
